Interactions with local embeddability

Dmitry Kudryavtsev

LMS Early Career fellow, University of York

York Semigroup Seminar 21.05.25

Basic notions

LEF (semi)group S

For every finite subset H of S there exists a finite (semi)group F_H and an injective map $f_H: H \to F_H$, such that for all $x, y \in H$ (with $xy \in H$) we have $(xy)f_H = (xf_H)(yf_H)$. The pair (F_H, f_H) is called approximating for H.

D. Kudryavtsev

Basic notions

LEF (semi)group S

For every finite subset H of S there exists a finite (semi)group F_H and an injective map $f_H: H \to F_H$, such that for all $x, y \in H$ (with $xy \in H$) we have $(xy)f_H = (xf_H)(yf_H)$. The pair (F_H, f_H) is called *approximating* for H.

Equivalent definitions

Let ${\mathcal F}$ be the class of finite semigroups.

- S is LEF;
- S is a model of $Th_{\forall}(\mathcal{F})$;
- S is embeddable into a model of $Th(\mathcal{F})$.

Example and non-example

Free semigroup $S_n = Sg(x_1, \dots, x_n)$

Any finite subset H of S_n embeds into the semigroup

$$F_H = Sg\langle 0, x_1, \dots, x_n | \mathcal{R} \rangle$$

where \mathcal{R} is the set of relations stating 0u = u0 = 0 for all u and w = 0 for $I(w) \ge m$ where $m = \max\{I(h)|h \in H\}$.

Example and non-example

Free semigroup $S_n = Sg\langle x_1, \ldots, x_n \rangle$

Any finite subset H of S_n embeds into the semigroup

$$F_H = Sg\langle 0, x_1, \dots, x_n | \mathcal{R} \rangle$$

where \mathcal{R} is the set of relations stating 0u = u0 = 0 for all u and w = 0 for $I(w) \ge m$ where $m = \max\{I(h)|h \in H\}$.

Semigroup $T = Sg\langle a, b|a^2b = a\rangle$

The finite subset $H = \{a, b, ab, aba\}$ cannot embed into a finite semigroup. For a potential approximating pair (F, f) of H denote c = af and d = bf. We would have $c^n = c^{n+r} \implies c^{n-1} = c^n d = c^{n+r} d = c^{n+r-1} \implies \ldots \implies c = c^{r+1} \implies cd = c^r \implies cdc = ccd = c$ which contradicts the fact that $aba \neq a$.

◆ロト ◆個ト ◆差ト ◆差ト 差 めな

General and semigroup papers

- E. Gordon, A. Vershik, Groups that are locally embeddable in the class of finite groups, Algebra i Analiz 9:1 (1997), 71–97;
- O. Belegradek, Local embeddability, Algebra and Discrete Mathematics **14**:1 (2012), 14–28;
- D. K., Semigroups locally embeddable into the class of finite semigroups, IJAC 33:5 (2023), 969–988;
- D. K., Restrictions on local embeddability into finite semigroups, Semigroup Forum **109** (2024), 148–166.

General and semigroup papers

- E. Gordon, A. Vershik, Groups that are locally embeddable in the class of finite groups, Algebra i Analiz 9:1 (1997), 71–97;
- O. Belegradek, Local embeddability, Algebra and Discrete Mathematics 14:1 (2012), 14–28;
- D. K., Semigroups locally embeddable into the class of finite semigroups, IJAC 33:5 (2023), 969–988;
- D. K., Restrictions on local embeddability into finite semigroups, Semigroup Forum 109 (2024), 148–166.

There are multiple possible further avenues of research, including:

General and semigroup papers

- E. Gordon, A. Vershik, Groups that are locally embeddable in the class of finite groups, Algebra i Analiz 9:1 (1997), 71–97;
- O. Belegradek, Local embeddability, Algebra and Discrete Mathematics 14:1 (2012), 14–28;
- D. K., Semigroups locally embeddable into the class of finite semigroups, IJAC 33:5 (2023), 969–988;
- D. K., Restrictions on local embeddability into finite semigroups, Semigroup Forum 109 (2024), 148–166.

There are multiple possible further avenues of research, including:

deeper analysis of LEF semigroup classes;

General and semigroup papers

- E. Gordon, A. Vershik, Groups that are locally embeddable in the class of finite groups, Algebra i Analiz 9:1 (1997), 71–97;
- O. Belegradek, Local embeddability, Algebra and Discrete Mathematics 14:1 (2012), 14–28;
- D. K., Semigroups locally embeddable into the class of finite semigroups, IJAC 33:5 (2023), 969–988;
- D. K., Restrictions on local embeddability into finite semigroups, Semigroup Forum 109 (2024), 148–166.

There are multiple possible further avenues of research, including:

- deeper analysis of LEF semigroup classes;
- direct generalisation of the LEF property, e.g. soficity;

General and semigroup papers

- E. Gordon, A. Vershik, *Groups that are locally embeddable in the class of finite groups*, Algebra i Analiz **9**:1 (1997), 71–97;
- O. Belegradek, Local embeddability, Algebra and Discrete Mathematics 14:1 (2012), 14–28;
- D. K., Semigroups locally embeddable into the class of finite semigroups, IJAC 33:5 (2023), 969–988;
- D. K., Restrictions on local embeddability into finite semigroups, Semigroup Forum 109 (2024), 148–166.

There are multiple possible further avenues of research, including:

- deeper analysis of LEF semigroup classes;
- direct generalisation of the LEF property, e.g. soficity;
- studying other possible properties inspired by definitions of LEF.

D. Kudryavtsev Interactions with I.e. 21.05.25, York 4 / 14

Embedding into special finite semigroups...

Proposition

A group is an LEF semigroup if and only if it is an LEF group.

Embedding into special finite semigroups...

Proposition

A group is an LEF semigroup if and only if it is an LEF group.

Proposition

An inverse semigroup (i.e. a semigroup where for every x there exists a unique x^{-1} such that $xx^{-1}x = x$ and $x^{-1}xx^{-1} = x^{-1}$) is an LEF semigroup if and only if it is locally embeddable into finite inverse semigroups.

Embedding into special finite semigroups...

Proposition

A group is an LEF semigroup if and only if it is an LEF group.

Proposition

An inverse semigroup (i.e. a semigroup where for every x there exists a unique x^{-1} such that $xx^{-1}x=x$ and $x^{-1}xx^{-1}=x^{-1}$) is an LEF semigroup if and only if it is locally embeddable into finite inverse semigroups.

Proposition

A Clifford semigroup (i.e. inverse semigroup where $xx^{-1} = x^{-1}x$) is an LEF semigroup if and only if it is locally embeddable into finite Clifford semigroups.

Cancellativity

An example by A. Malcev, the cancellative semigroup $Sg\langle a, b, c, d, x, y, u, v | ax = by, cx = dy, au = bv \rangle$ is LEF but it is not embeddable into finite cancellative semigroups, a.k.a. groups.

Cancellativity

An example by A. Malcev, the cancellative semigroup $Sg\langle a,b,c,d,x,y,u,v|ax=by,cx=dy,au=bv\rangle$ is LEF but it is not embeddable into finite cancellative semigroups, a.k.a. groups.

It follows from the fact that the relations would imply cu = dv in a group.

Cancellativity

An example by A. Malcev, the cancellative semigroup $Sg\langle a,b,c,d,x,y,u,v|ax=by,cx=dy,au=bv\rangle$ is LEF but it is not embeddable into finite cancellative semigroups, a.k.a. groups.

It follows from the fact that the relations would imply cu = dv in a group.

\mathcal{J} -triviality

The semigroup

 $Sg\langle a, b, c, e, x | xb = cx, ac = ca, ea = ae, ec = ce, aex = ax, xca = xe \rangle$ is LEF but it is not embeddable into finite \mathcal{J} -trivial semigroups.

Cancellativity

An example by A. Malcev, the cancellative semigroup $Sg\langle a,b,c,d,x,y,u,v|ax=by,cx=dy,au=bv\rangle$ is LEF but it is not embeddable into finite cancellative semigroups, a.k.a. groups.

It follows from the fact that the relations would imply cu = dv in a group.

\mathcal{J} -triviality

The semigroup

 $Sg\langle a, b, c, e, x | xb = cx, ac = ca, ea = ae, ec = ce, aex = ax, xca = xe \rangle$ is LEF but it is not embeddable into finite \mathcal{J} -trivial semigroups.

It follows from the fact that in finite \mathcal{J} -trivial semigroups we would have $z^r=z^{r+1}$ for any z and some power r, while we also have $xa^nx=xa^{n+1}xb$.

D. Kudryavtsev Interactions with I.e. 21.05.25, York 6/14

Group case

For every finite subset H of the group G and $\epsilon \geq 0$ there exists a finite symmetric group Σ_n and a map $f: G \to \Sigma_n$, such that:

- $d((g_1f)(g_2f),(g_1g_2)f) \le \epsilon$ for all $g_1,g_2 \in H$;
- $d(g_1f, g_2f) \ge 1 \epsilon$ for all distinct $g_1, g_2 \in H$;

where d(x, y) is the Hamming metric on Σ_n .

Group case

For every finite subset H of the group G and $\epsilon \geq 0$ there exists a finite symmetric group Σ_n and a map $f: G \to \Sigma_n$, such that:

- $d((g_1f)(g_2f),(g_1g_2)f) \le \epsilon$ for all $g_1,g_2 \in H$;
- $d(g_1f, g_2f) \ge 1 \epsilon$ for all distinct $g_1, g_2 \in H$;

where d(x, y) is the Hamming metric on Σ_n .

It is not known whether all groups are sofic.

Group case

For every finite subset H of the group G and $\epsilon \geq 0$ there exists a finite symmetric group Σ_n and a map $f: G \to \Sigma_n$, such that:

- $d((g_1f)(g_2f),(g_1g_2)f) \le \epsilon$ for all $g_1,g_2 \in H$;
- $d(g_1f, g_2f) \ge 1 \epsilon$ for all distinct $g_1, g_2 \in H$;

where d(x, y) is the Hamming metric on Σ_n .

It is not known whether all groups are sofic.

Semigroup case?

For every finite subset H of the semigroup S and $\epsilon \geq 0$ there exists a finite full transformation monoid T_n and a map $f: S \to T_n$, such that:

- $d((s_1f)(s_2f),(s_1s_2)f) \le \epsilon$ for all $s_1,s_2 \in H$;
- $d(s_1f, s_2f) \ge 1 \epsilon$ for all distinct $s_1, s_2 \in H$;

where d(x, y) is the Hamming metric on T_n .

◆□▶ ◆□▶ ◆■▶ ◆■▶ ◆■ めのの

Bicyclic monoid

The monoid $B = Mon\langle p, q|pq = 1\rangle$ fails to satisfy the definition of "semigroup soficity" due to the fact that d(1, xy) = d(1, yx) in T_n .

D. Kudryavtsev

Bicyclic monoid

The monoid $B = Mon\langle p, q|pq = 1\rangle$ fails to satisfy the definition of "semigroup soficity" due to the fact that d(1, xy) = d(1, yx) in T_n .

To see that, consider the set $K = \{k \in \{1, \ldots, n\} | k(yx) = k\}$. We have |K| = |Ky|. Furthermore, for every $i \in Ky$ there exists $k \in K$ such that i = ky. Note that i(xy) = k(yxy) = ky = i. Thus, we have $d(1, yx) = 1 - \frac{|K|}{n} \ge d(1, xy)$. A dual argument gives us the desired equality.

8 / 14

D. Kudryavtsev Interactions with I.e. 21.05.25, York

Bicyclic monoid

The monoid $B = Mon\langle p, q|pq = 1\rangle$ fails to satisfy the definition of "semigroup soficity" due to the fact that d(1, xy) = d(1, yx) in T_n .

To see that, consider the set $K = \{k \in \{1, ..., n\} | k(yx) = k\}$. We have |K| = |Ky|. Furthermore, for every $i \in Ky$ there exists $k \in K$ such that i = ky. Note that i(xy) = k(yxy) = ky = i. Thus, we have $d(1, yx) = 1 - \frac{|K|}{n} \ge d(1, xy)$. A dual argument gives us the desired equality.

Almost bicyclic monoid

The monoid $B \cup \{id\}$ where id is an external identity satisfies the definition of "semigroup soficity".

D. Kudryavtsev

Bicyclic monoid

The monoid $B = Mon\langle p, q|pq = 1\rangle$ fails to satisfy the definition of "semigroup soficity" due to the fact that d(1, xy) = d(1, yx) in T_n .

To see that, consider the set $K = \{k \in \{1, \dots, n\} | k(yx) = k\}$. We have |K| = |Ky|. Furthermore, for every $i \in Ky$ there exists $k \in K$ such that i = ky. Note that i(xy) = k(yxy) = ky = i. Thus, we have $d(1, yx) = 1 - \frac{|K|}{n} \ge d(1, xy)$. A dual argument gives us the desired equality.

Almost bicyclic monoid

The monoid $B \cup \{id\}$ where id is an external identity satisfies the definition of "semigroup soficity".

For more information see M. Kambites, *A large class of sofic monoids*, Semigroup Forum **91** (2015), 282–294.

LWF (semi)group S

For every finite subset H of S there exists a finite (semi)group D_H and a map $d_H:D_H\to S$, such that $H\subseteq D_Hd_H$ and for all $x',y'\in D_H$ with $x'd_H,y'd_H\in H$ it holds that $(x'y')d_H=(x'd_H)(y'd_H)$.

LWF (semi)group S

For every finite subset H of S there exists a finite (semi)group D_H and a map $d_H: D_H \to S$, such that $H \subseteq D_H d_H$ and for all $x', y' \in D_H$ with $x'd_H, y'd_H \in H$ it holds that $(x'y')d_H = (x'd_H)(y'd_H)$.

Proposition

An LEF (semi)group is LWF.

LWF (semi)group S

For every finite subset H of S there exists a finite (semi)group D_H and a map $d_H:D_H\to S$, such that $H\subseteq D_Hd_H$ and for all $x',y'\in D_H$ with $x'd_H,y'd_H\in H$ it holds that $(x'y')d_H=(x'd_H)(y'd_H)$.

Proposition

An LEF (semi)group is LWF.

Theorem (E. Gordon, A. Vershik, 1997)

A group is LEF if and only if it is LWF.

LWF (semi)group S

For every finite subset H of S there exists a finite (semi)group D_H and a map $d_H:D_H\to S$, such that $H\subseteq D_Hd_H$ and for all $x',y'\in D_H$ with $x'd_H,y'd_H\in H$ it holds that $(x'y')d_H=(x'd_H)(y'd_H)$.

Proposition

An LEF (semi)group is LWF.

Theorem (E. Gordon, A. Vershik, 1997)

A group is LEF if and only if it is LWF.

Proposition

There is an LWF semigroup which is not LEF.

An LWF example...

...and more!

The semigroups Sg(a, b, c, d, e, x|abx = acx, ac = cd, ae = ed, xcd = acx, acc = cd, ae = ed, xcd = acx, acc = cd, ae = ed, xcd = acx, acc = cd, ae = ed, xcd = acx, acc = cd, ae = ed, xcd = acx, acc = cd, ae = ed, xcd = acx, acc = cd, acc =xe, aex = ax, xexb = bxex and Sg(a, b, c, e, x|abx = acx, ac = ca, ae = acx)ea, xcd = xe, aex = ax, xexb = bxex are not LEF. However, they are \mathcal{J} -trivial and LWF.

An LWF example...

...and more!

The semigroups $Sg\langle a,b,c,d,e,x|abx=acx,ac=cd,ae=ed,xcd=xe,aex=ax,xexb=bxex\rangle$ and $Sg\langle a,b,c,e,x|abx=acx,ac=ca,ae=ea,xcd=xe,aex=ax,xexb=bxex\rangle$ are not LEF. However, they are $\mathcal J$ -trivial and LWF.

The LWF property is not all-encompassing.

A usual suspect

The bicyclic monoid is not LWF.

Recall that LEF structures are exactly substructures of the models of $Th(\mathcal{F})$ where \mathcal{F} is the class of finite semigroups. These can be alternatively seen as ultraproducts of finite semigroups.

Recall that LEF structures are exactly substructures of the models of $Th(\mathcal{F})$ where \mathcal{F} is the class of finite semigroups. These can be alternatively seen as ultraproducts of finite semigroups.

Second natural transformation

How can we characterise the structures which are *quotients* of ultraproducts of finite semigroups (UFS)?

Recall that LEF structures are exactly substructures of the models of $Th(\mathcal{F})$ where \mathcal{F} is the class of finite semigroups. These can be alternatively seen as ultraproducts of finite semigroups.

Second natural transformation

How can we characterise the structures which are *quotients* of ultraproducts of finite semigroups (UFS)?

A preliminary proposition

A group is a quotient of an UFS if and only if it is a quotient of an ultraproduct of groups.

Recall that LEF structures are exactly substructures of the models of $Th(\mathcal{F})$ where \mathcal{F} is the class of finite semigroups. These can be alternatively seen as ultraproducts of finite semigroups.

Second natural transformation

How can we characterise the structures which are *quotients* of ultraproducts of finite semigroups (UFS)?

A preliminary proposition

A group is a quotient of an UFS if and only if it is a quotient of an ultraproduct of groups.

A non-example

The group \mathbb{Z} is not isomorphic to a quotient of any UFS.

Note that we have being using $x^n = x^{n+r}$ as a starting point for demonstrating the lack of embeddability. However, this is only *periodicity*.

D. Kudryavtsev Interactions with I.e. 21.05.25, York 12 / 14

Note that we have being using $x^n = x^{n+r}$ as a starting point for demonstrating the lack of embeddability. However, this is only *periodicity*.

Free Burnside (semi)groups

- A group given by presentation $Gp\langle x_1, \ldots, x_m | R_r \rangle$ where $R_r = \{(w^r = 1) | w \in \{x_1^{\pm}, \ldots, x_m^{\pm}\}^*\};$
- A semigroup given by presentation $Sg\langle x_1, \ldots, x_m | R_{r,n} \rangle$ where $R_{r,n} = \{(w^n = w^{r+n}) | w \in \{x_1, \ldots, x_m\}^*\}.$

D. Kudryavtsev Interactions with I.e. 21.05.25, York 12 / 14

Note that we have being using $x^n = x^{n+r}$ as a starting point for demonstrating the lack of embeddability. However, this is only *periodicity*.

Free Burnside (semi)groups

- A group given by presentation $Gp\langle x_1, \ldots, x_m | R_r \rangle$ where $R_r = \{(w^r = 1) | w \in \{x_1^{\pm}, \ldots, x_m^{\pm}\}^*\};$
- A semigroup given by presentation $Sg\langle x_1, \ldots, x_m | R_{r,n} \rangle$ where $R_{r,n} = \{(w^n = w^{r+n}) | w \in \{x_1, \ldots, x_m\}^*\}.$

For large enough n, r both structures are infinite.

12 / 14

D. Kudryavtsev Interactions with I.e. 21.05.25, York

Note that we have being using $x^n = x^{n+r}$ as a starting point for demonstrating the lack of embeddability. However, this is only *periodicity*.

Free Burnside (semi)groups

- A group given by presentation $Gp\langle x_1, \ldots, x_m | R_r \rangle$ where $R_r = \{(w^r = 1) | w \in \{x_1^{\pm}, \ldots, x_m^{\pm}\}^*\};$
- A semigroup given by presentation $Sg\langle x_1, \ldots, x_m | R_{r,n} \rangle$ where $R_{r,n} = \{(w^n = w^{r+n}) | w \in \{x_1, \ldots, x_m\}^*\}.$

For large enough n, r both structures are infinite.

Proposition

There exists a periodic structure which is not LEF.

Other open problems and some progress on them

• More LEF interactions, like E-unitary inverse semigroups (free inverse semigroup is locally embeddable into finite E-unitary semigroups) and completely regular semigroups (completely simple semigroups are locally embeddable into finite completely simple semigroups);

Other open problems and some progress on them

- More LEF interactions, like E-unitary inverse semigroups (free inverse semigroup is locally embeddable into finite E-unitary semigroups) and completely regular semigroups (completely simple semigroups are locally embeddable into finite completely simple semigroups);
- Proving or disproving that inverse semigroups that are LWF are also LEF (Clifford semigroups and inverse semigroups with finite number of idempotents satisfy this property);

Other open problems and some progress on them

- More LEF interactions, like E-unitary inverse semigroups (free inverse semigroup is locally embeddable into finite E-unitary semigroups) and completely regular semigroups (completely simple semigroups are locally embeddable into finite completely simple semigroups);
- Proving or disproving that inverse semigroups that are LWF are also LEF (Clifford semigroups and inverse semigroups with finite number of idempotents satisfy this property);
- Finding better definition of "semigroup soficity".

Thank you!